A computational model for regulation of nanoscale glucan exposure in Candida albicans
نویسندگان
چکیده
Candida albicans is a virulent human opportunistic pathogen. It evades innate immune surveillance by masking an immunogenic cell wall polysaccharide, β-glucan, from recognition by the immunoreceptor Dectin-1. Glucan unmasking by the antifungal drug caspofungin leads to changes in the nanostructure of glucan exposure accessible to Dectin-1. The physical mechanism that regulates glucan exposure is poorly understood, but it controls the nanobiology of fungal pathogen recognition. We created computational models to simulate hypothetical physical processes of unmasking glucan in a biologically realistic distribution of cell wall glucan fibrils. We tested the predicted glucan exposure nanostructural features arising from these models against experimentally measured values. A completely spatially random unmasking process, reflective of random environmental damage to the cell wall, cannot account for experimental observations of glucan unmasking. However, the introduction of partially edge biased unmasking processes, consistent with an unmasking contribution from active, local remodeling at glucan exposure sites, produces markedly more accurate predictions of experimentally observed glucan nanoexposures in untreated and caspofungin-treated yeast. These findings suggest a model of glucan unmasking wherein cell wall remodeling processes in the local nanoscale neighborhood of glucan exposure sites are an important contributor to the physical process of drug-induced glucan unmasking in C. albicans.
منابع مشابه
Cloning of the RHO1 gene from Candida albicans and its regulation of beta-1,3-glucan synthesis.
The Saccharomyces cerevisiae RHO1 gene encodes a low-molecular-weight GTPase. One of its recently identified functions is the regulation of beta-1,3-glucan synthase, which synthesizes the main component of the fungal cell wall (J. Drgonova et al., Science 272:277-279, 1996; T. Mazur and W. Baginsky, J. Biol. Chem. 271:14604-14609, 1996; and H. Qadota et al., Science 272:279-281, 1996). From the...
متن کاملAdaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition
Candida albicans is able to proliferate in environments that vary dramatically in ambient pH, a trait required for colonising niches such as the stomach, vaginal mucosal and the GI tract. Here we show that growth in acidic environments involves cell wall remodelling which results in enhanced chitin and β-glucan exposure at the cell wall periphery. Unmasking of the underlying immuno-stimulatory ...
متن کاملLive Candida albicans suppresses production of reactive oxygen species in phagocytes.
Production of reactive oxygen species (ROS) is an important aspect of phagocyte-mediated host responses. Since phagocytes play a crucial role in the host response to Candida albicans, we examined the ability of Candida to modulate phagocyte ROS production. ROS production was measured in the murine macrophage cell line J774 and in primary phagocytes using luminol-enhanced chemiluminescence. J774...
متن کاملTranscriptional response to fluconazole and amphotericin B in Candida albicans biofilms.
Biofilm formation is often associated with persistent Candida albicans infections. Treatment of these infections is difficult, since sessile C. albicans cells show increased resistance towards antifungal agents. The molecular mechanisms behind biofilm resistance in C. albicans are not yet understood. In the present study, we investigated the transcriptional response in young and mature in vitro...
متن کاملDynamic, Morphotype-Specific Candida albicans β-Glucan Exposure during Infection and Drug Treatment
Candida albicans, a clinically important dimorphic fungal pathogen that can evade immune attack by masking its cell wall beta-glucan from immune recognition, mutes protective host responses mediated by the Dectin-1 beta-glucan receptor on innate immune cells. Although the ability of C. albicans to switch between a yeast- or hyphal-form is a key virulence determinant, the role of each morphotype...
متن کامل